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Who are we?

Computational Imaging and Al in Medicine
Prof. Dr. Julia Schnabel



Who are we?

Sameer Ambekar Dr. Laura Daza

Research interest:
- Distribution shifts
- Test-time adaptation
- Foundation models

Research interest:
- Multi-modal Learning
- Foundation models
- Segmentation




Towards Foundation Models
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Towards Medical Foudation Models
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How to use shots for Foundation models?

Zero-Shot

One-Shot

Few-Shot

Translate English to French: task description

cheese => prompt

Model predicts the answer
with a natural language
task description.

No Gradient updates

Translate English to French: task description
sea otter => loutre de mer example
cheese => prompt

In addition to task
description, the model
sees a single example of
the task.

No Gradient updates

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

In addition to task
description, the model
sees a few examples of
the task.

No Gradient updates



Goals of the Seminar

Understand:
(i) What to adapt:
Identify which model parameters to adapt, and explore common strategies for adaptation
(ii) How to adapt:
The various strategies by which the models can be adapted to the target data
(iii) Evaluation for clinical context:
Discuss methods for handling distributional shifts that mirror real-world clinical scenarios

Learn:
How to read and present a scientific paper
How to design and present a scientific poster
Know better:
A wide range of foundation models and how to adapt and align them to medical imaging applications

International guest speaker talks on the topic
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