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Towards Foundation Models



Towards Medical Foudation Models



How to use shots for Foundation models?

Zero-Shot One-Shot Few-Shot

Model predicts the answer 
with a natural language 
task description. 
 
 
No Gradient updates

In addition to task 
description, the model 
sees a single example of 
the task. 
 
No Gradient updates

In addition to task 
description, the model 
sees a few examples of  
the task. 
 
No Gradient updates



Goals of the Seminar
 
Understand: 

(i) What to adapt:  
Identify which model parameters to adapt, and explore common strategies for adaptation 
(ii) How to adapt:  
The various strategies by which the models can be adapted to the target data  
(iii) Evaluation for clinical context:  
Discuss methods for handling distributional shifts that mirror real-world clinical scenarios 

 
Learn: 

How to read and present a scientific paper 
How to design and present a scientific poster 

 
Know better:  
 A wide range of foundation models and how to adapt and align them to medical imaging applications 

 

International guest speaker talks on the topic 
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